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Abstract
We propose a set of Langevin equations of motion together with a reaction
rule for the study of binary reactions. Our scheme is designed to address this
problem for arbitrary friction γ and temperature T . It easily accommodates the
inclusion of a substrate potential, and it lends itself to straightforward numerical
integration. We test this approach on diffusion-limited (γ → ∞) as well as
ballistic (γ = 0) A + A → P reactions for which there are extensive exact and
approximate theoretical results as well as extensive Monte Carlo results. We
reproduce the known results using our integration scheme, and also present new
results for the ballistic reactions.

1. Introduction

With very few exceptions, even the simplest irreversible bimolecular reactions of the form
A + A → P , that is, those where two reactant particles of the same species A combine to
form a product P , continue to elude exact solution in regimes where the ordinary laws of mass
action do not work. The law of mass action for the concentration ρ(t) of reactant for either
reaction, dρ(t) dt = −kρ2(t), leads to a decay law of the form ρ(t) ∼ t−1, often called the
‘classical’ decay law. While this law works for sufficiently high dimensions, it generally does
not work, for instance, for d = 1, where one observes slower decay laws, called ‘anomalous’
in the literature. The reasons for the breakdown are usually fairly well understood and are
associated with the evolution of non-uniform spatial distributions and/or velocity correlations
that reflect the fact that these systems are not well mixed.

That ‘it does not work’ is of course a very broad statement, since we have not specified
the conditions under which the reaction takes place, or the dynamics under which the reactants
move. Indeed, there are a number of essentially ‘orthogonal’ literatures in which these simple
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reactions are discussed for very specific sets of conditions, ones that are sometimes chosen
precisely because an exact solution is possible under these conditions. Among these are the one-
dimensional diffusion-limited annihilation reaction, P = ∅, where it is possible to calculate (for
all time) the total concentration of reactant as a function of time, ρ(t) [1, 2]. Another is the
diffusion-limited coalescence reaction A+ A → A, where one can calculate ρ(t) as well as the
distribution function of nearest neighbour interparticle distances [3–7]. These two systems have
provided benchmarks against which approximate closure schemes of multiparticle distribution
function hierarchies in the diffusion-limited regime can be tested [8].

A third scenario that has been heavily investigated involves the ‘opposite’ limit, namely,
one in which the particles move ballistically. Here one focuses not only on the concentration
ρ(t) of reactants but also on their velocity distribution and/or its moments. While these
studies tend to start from kinetic equations (e.g., the Boltzmann equation) which are themselves
uncontrolled and therefore may or may not provide an exact description of the problem, they
strive to solve these kinetic equations exactly so that only the starting point is not controlled.
For example, one branch of these studies considers the reaction A + A → ∅ with reactants
that have a dichotomic velocity distribution (±v) which remains intact as pairs of particles
react [9, 10, 12, 13]. Another looks at this reaction when the distribution of velocities is
continuous [10, 11, 14–19]. In this case the distribution changes with time and the system
cools down as faster particles react more rapidly than slower ones. Embellishments of these
basic ingredients are plentiful as well, including the consideration of possible parallel fates
(e.g., a combination of the A + A → A and A + A → ∅ reactions as well as a probability that
nothing happens upon encounter) [11, 13, 18]. In any case, the results of these studies are then
checked against extensive Monte Carlo or molecular dynamics simulations [10, 11, 14–17, 19].

One can think of all of these scenarios as involving particles that move in space according
to classical laws of motion in a thermal environment and react upon encounter. In the simplest
such representation one can imagine the reactants to be hard sphere particles that do not interact
except upon encounter, so that between encounters the equation of motion of each reactant
particle in, say, one dimension, might then be the simple Langevin equation

mẍ = −γ ẋ + ξ(t). (1)

Here m is the mass of the particle, a dot denotes a derivative with respect to time, γ is the
coefficient of friction, and ξ(t) is a white thermal noise that obeys the fluctuation–dissipation
relation at temperature T ,

〈ξ(t)ξ(t ′)〉 = 2γ kBT δ(t − t ′). (2)

(It is trivial to generalize this to higher dimensions, but here we will focus on motion in one
dimension.) One must specify the initial position and velocity distributions of reactants. If
the particles have a radius R, a reaction takes place (or takes place with a probability p < 1,
but here we always take p = 1) when two particle centres are a distance 2R apart (see the
appendix for a more precise characterization). One must also define exactly what happens upon
encounter of two particles; in particular, if there are relevant product particles as in the reaction
A + A → A, one must specify a rule for the velocity of the product particle. In any case,
a solution to this dynamical portrait would make it possible to calculate the time-dependent
reactant concentration and interparticle distribution functions.

Under what conditions would one expect this description to reproduce the specific cases
mentioned above? This is a testable proposition which can be checked via numerical
integration. Presumably, the diffusion-limited reactions correspond to the high friction limit
where the inertial term mẍ becomes irrelevant. The ballistic A + A → ∅ reaction would of
course be associated with the case of zero temperature and no friction.
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We have undertaken an encompassing programme of research that subsumes these
particular situations as special cases, namely, that of exploring the bimolecular reaction
dynamics of Langevin particles (both A + A and A + B) as described above over a wide
regime of friction and temperature and initial distributions in one and two dimensions. Our
programme also incorporates the possible presence of a surface or substrate potential V (x),
thus generalizing the equation of motion between encounters to

mẍ = −V ′(x) − γ ẋ + ξ(t), (3)

where the prime denotes a derivative with respect to x . Toward this broad goal, in this paper we
present partial results that address the conjectured correspondence between the known cases
mentioned earlier and our numerical simulation results in the appropriate parameter regimes.
We also present results that seem not to have been presented before. Here we focus on the
A + A diffusion-limited and ballistic regimes and show results for reactant densities, velocity
distribution features, and nearest neighbour interparticle distribution functions, in the absence
of a substrate potential. Results for the unexplored regimes of intermediate and low friction in
a thermal environment and for reactions in the presence of a substrate potential for all frictions
will be presented elsewhere [20].

Parenthetically but importantly, we acknowledge that the specific reactions A + A → ∅
and A + A → A are not chosen for their ‘real life’ significance as much as for their relative
mathematical tractability. More interesting for real applications are aggregation reactions of
the form A + A → A2 or chains of such reactions, An + Am → An+m . An extensive review of
theories of irreversible aggregation reactions can be found in [21].

In section 2 we consider diffusion-limited reactions, for which we compare results obtained
from our numerical integration scheme with exact solutions. These comparisons cover all times
rather than just the asymptotic behaviour. In section 3 we present our integration results for
ballistic reactions with dichotomic and with continuous (Gaussian) velocity distributions. Here
there are no exact results to compare to, but some asymptotic and previous numerical results
are available. Our results include distribution functions that to our knowledge have not been
previously reported. We conclude with a summary in section 4.

2. Diffusion-limited reactions

Diffusion-limited binary reactions are usually characterized by position-dependent concentra-
tions ρ(x, t) and two-particle distribution functions or nearest neighbour interparticle distance
distribution functions. For the reactions of interest here it is observed that initially random
distributions of reactants evolve into spatially non-random distributions, and that as a result the
global concentration ρ(t) ≡ ∫ ∞

−∞ dx ρ(x, t) decays anomalously with time, i.e., with a non-
classical exponent. To determine these quantities analytically, it is customary to start with a
reaction–diffusion equation for ρ(x, t) in which the reaction term involves a two-particle dis-
tribution function. This is of course just the beginning of an infinite hierarchy, since an equation
for the two-particle function involves a three-particle function, and so on. The usual procedure
is then to truncate this hierarchy in one of a variety of possible ways to obtain a small closed
set of reaction–diffusion equations [8]. These equations are necessarily approximate, although
they often work quite well.

This seemingly universal limitation to an exact solution of the problem was in fact
overcome when attention was shifted from the n-particle distribution function formulation to
a different quantity. In particular, the diffusion-limited coalescence reaction A + A → A
was the first of the reactions under discussion here to be solved exactly [3–7]. This became
possible because instead of the reactant concentration ρ(x, t) the problem was formulated in
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terms of the empty interval function E(x, t), defined as the probability that an interval of length
x is empty (contains no particles) at time t . It is straightforward to deduce that the evolution
equation for this function is exactly linear,

∂

∂ t
E(x, t) = 2D

∂2

∂x2
E(x, t), (4)

together with the boundary conditions E(0, t) = 1 implied by the coalescence reaction and
E(∞, t) = 0 for any nonvanishing concentration. Here D is the diffusion coefficient for a
reactant particle and the initial condition E(x, 0) depends on the initial particle distribution.
The concentration ρ(t) and the interparticle distribution function P(x, t) are immediately
obtained from the interval function:

ρ(t) = −∂ E(x, t)

∂x

∣
∣
∣
∣
x=0

, P(x, t) = 1

ρ(t)

∂2 E(x, t)

∂x2
. (5)

For a random initial distribution of reactants of initial concentration ρ(0) = c0 the initial
interparticle distribution function is of Poisson form, P(x, 0) = c0 exp(−c0x) and one readily
finds

ρ(t) = ρ(0) exp
(
2Dc2

0t
)

erfc
[
c0(2Dt)1/2

]
. (6)

Note that this solution is exact for all times in the continuum system, and at long times
leads to the anomalous decay t−1/2 also found by a variety of approximate methods [8]. The
interparticle distribution function for the random initial distribution of reactants is given by

P(x, t) = c0

2

e−c0 x erfc
[−x+4c0 Dt

(8Dt)1/2

] − ec0 x erfc
[ x+4c0 Dt

(8Dt)1/2

]

erfc
[
(2c2

0 Dt)1/2
] . (7)

Again, this solution is valid for all times. While it starts out as an exponential, the interparticle
distribution function develops a well-known interparticle gap that grows with time and that is
responsible for the fact that the reaction slows down relative to the law of mass action. This
gap, which reflects the fact that diffusion is a poor mixing mechanism in constrained or low-
dimensional geometries, is clear in the analytic scaled asymptotic form obtained from (7) as
t → ∞ and also found by a variety of approximate methods [8],

P(z) = lim
t→inf

P(x, t)
dx

dz
= π

2
z exp

(
−π

4
z2

)
, (8)

where z = x/(2π Dt)1/2.
These well known analytic results (which remarkably do not depend on the value of the

reaction rate coefficient that would be introduced in the usual reaction–diffusion picture) are
a test for our numerical integration scheme in the high γ limit. The integration procedure
is described in detail in the appendix. In figure 1 we show the Langevin equation result for
the reactant concentration for γ = 50 and kBT = 0.2. The diffusion coefficient D in the
continuum picture is related to these quantities via the Einstein relation D = kBT/γ and is
thus 4 × 10−3 for the values used in the numerical integration. The figure is on a log–log
scale and there are actually four curves in addition to the t−1/2 line, which serves as a guide
to the eye. However, only two curves are visible because pairs of curves overlap so precisely
that they cannot be distinguished. In particular, the upper curve includes equation (6) (solid)
as well as the numerical integration curve (dashed but not visible). The point is that they are
indistinguishable at all times. Both go to the t−1/2 asymptotic behaviour, but essentially perfect
agreement between the reaction–diffusion and Langevin pictures does not require that we go to
this limit.
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Figure 1. Reactant concentration versus time for diffusion-limited reactions. Upper curves:
A + A → A; theory (6) with D = 4 × 10−3 (solid) and numerical integration (dashed but not
visible because of complete overlap). Lower curves: A + A → ∅; theory (11) with D = 4 × 10−3

(solid) and numerical integration (dashed, again hardly visible). For numerical integration curves:
γ = 50, kBT = 0.2.
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Figure 2. Interparticle distribution function for the diffusion-limited coalescence reaction A+ A →
A at different times. Solid curves: equation (7). Symbols: numerical integration results. Same
parameters as in figure 1.

Figure 2 shows the interparticle distribution function P(x, t) at three different times. The
solid curves are obtained from equation (7) and the symbols are the numerical integration
results. Again the agreement is excellent. The small differences at the earliest times are due to
the finite size of the particles in the numerical integration and the small distortion this causes in
the initial distribution, as described in detail in the appendix. The evolution of the interparticle
distribution gap that causes the reaction to slow down relative to the mean field behaviour
captured by the law of mass action is evident.
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The empty interval method cannot be used for the annihilation reaction A + A → 0
because the sizes of the empty intervals change discontinuously when there is a reaction. It
took a number of years to find another function that could also be calculated exactly and from
which physical observables could then be obtained. The problem was finally formulated in
terms of the interval parity function r(x, t), defined as the probability that an interval of length
x contains an even number of particles at time t [1, 2]. This quantity again evolves exactly
according to the same linear equation as the empty interval function,

∂

∂ t
r(x, t) = 2D

∂2

∂x2
r(x, t), (9)

but now with boundary conditions r(0, t) = 1 (as for the empty interval) and r(∞, t) = 1/2.
The concentration is related to the interval parity function precisely as in equation (5),

ρ(t) = −∂r(x, t)

∂x

∣
∣
∣
∣
x=0

, (10)

but it is not possible to relate the interparticle distribution function to r(x, t) in any
straightforward way so that here the only computable observable is the concentration. For a
random initial distribution of reactants one finds

ρ(t) = ρ(0) exp
(
8Dc2

0t
)

erfc
[
2c0(2Dt)1/2

]
. (11)

The lower curve in figure 1 shows this result as well as the Langevin equation integration
outcome. Again, they are perfectly superposed, so only one curve is visible. The asymptotic
behaviour is again of the form t−1/2, the total concentration here being lower because each
reaction event eliminates two particles rather than just one. The Langevin equation integration
again leads to an interparticle distribution very much like that of figure 2, but we do not show
it here because there are no exact analytic results to compare it to.

The exact results obtained for the diffusion-limited A + A → P reaction from the interval
approaches are of course well known. That the Langevin approach leads to results that agree
with these results provides a test of the suitability of this approach in one parameter regime.

3. Ballistic reactions

We now turn to reactants that move ballistically, to compare the predictions made for these
cases with the results obtained from the integration of the equations of motion together with
the encounter reaction rules when we set the damping equal to zero, γ = 0. Note that there are
no exact analytic results for these reactions. In fact, in general the kinetic equations used for
their description are themselves approximate, as are the solutions of these equations.

The reaction A + A → ∅ has been studied in some detail when the initial velocity
distribution is dichotomic (and remains dichotomic for all time since annihilation of pairs
of particles with opposite velocities does not affect the distribution). The behaviour of
the reactant concentration as a function of time in this case has been shown to decay
asymptotically as ρ(t) ∼ t−1/2, as in the diffusion-limited case, but for entirely different
physical reasons [9, 10, 12, 13]. This result has been obtained by a variety of arguments and has
been confirmed via Monte Carlo and molecular dynamics simulations [10, 11, 14–17, 19]. The
basic reason for the non-classical behaviour here is reflected in the correlations that develop
in the velocities of neighbouring particles, correlations that lead to the inapplicability of the
Boltzmann equation in this case. The correlations arise because as time proceeds, nearest
neighbouring particles that travel toward one another react, leaving behind particles that travel
away from one another or in the same direction (and that eventually react with another partner).
The reaction A + A → ∅ has also been studied for continuous initial velocity distributions. In

6



J. Phys.: Condens. Matter 19 (2007) 065108 J M Sancho et al

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

t

10
-5

10
-4

10
-3

10
-2

10
-1

ρ(
t)

t
-0.5

t
-0.79

Figure 3. Reactant concentration versus time for the ballistic reaction A + A → ∅ as obtained
from the Langevin integration scheme. Dashed curve: dichotomous velocity distribution ±v with
v = 0.2. Solid curve: initial Gaussian velocity distribution of width 0.2. The dotted lines are guides
for the eye.

this case the Boltzmann equation theories are more successful than in the dichotomous velocity
distribution case. The distribution of velocities changes as time proceeds because the fastest
reactants have a greater probability of reacting first. The asymptotic decay of the reactant
concentration is determined by the slowest particles and hence by the exponent μ in the initial
velocity distribution near the origin, p(v → 0) ∼ |v|μ [10, 11, 14–19]. In particular, the
Maxwell–Boltzmann distribution in one dimension is a Gaussian, for which μ = 0. The
theoretical analyses as well as a number of numerical simulations [10, 11, 14, 15, 19] lead to
decays ρ(t) ∼ t−ξ with a fair variation in the reported values of ξ , e.g., 0.666 [10, 11, 14],
0.769 [15], and 0.805 [19]. These values are in any case non-classical, a behaviour that is
reflected in the spatial distribution of reactants (see below).

In figure 3 we show ρ(t) as obtained from our numerical integration for both of these
initial velocity distributions. As in the previous section, the initial distribution of positions
is random except for the restriction on the overlap of particles described in the appendix, a
restriction that might affect some very early time results. The dashed line is the concentration
for the dichotomous velocity distribution, and the solid line for the Gaussian distribution. The
dotted lines are guides for the eye. The numerical integration scheme leads to the correct
asymptotic decay of the concentration in the dichotomous case, t−1/2. For the Gaussian velocity
distribution the decay is certainly within the range of values that have been reported in the
literature, close to 0.79. We note that the Langevin scheme is a faster and easier method than
are Monte Carlo simulations, and so if sufficiently motivated we could easily push it to obtain
a more precise prediction for the value of the decay exponent.

The A + A → A reaction is, as mentioned earlier, a rather artificial one chosen for
mathematical convenience rather than physical relevance. Here it requires specification of
the velocity of the product. Conservation of momentum would be the most physical criterion.
However, in the existing literature [13] a different rule, which conserves momentum on average,
has also been used, namely, that the product A has the velocity of one or the other of the
reacting pair with probability 1/2. We have adopted this rule in our integration. The asymptotic
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Figure 4. Numerical integration results for the root mean square velocity for ballistic reactions with
an initial Gaussian distribution. Initial width is 0.2. Solid: A + A → ∅. Dotted: A + A → A.

exponents in this case are identical to those in figure 3, but with a concentration that is altogether
higher at any given time because each reaction event removes only one reactant particle instead
of two.

As the reaction proceeds and the concentration of reactant decays with time, one can
also follow the changes in the velocity distribution of the reactants. A dichotomous velocity
distribution remains unchanged in time for the A + A → ∅ reaction. For A + A → A there
may be very small unimportant fluctuations created by the survival rule we have implemented,
but on average the distribution also remains unchanged. The situation is of course different
with a continuous velocity distribution. In the Gaussian case, for both reactions we observe
the expected decay of the high velocity wings and the overall narrowing of the distribution,
reflecting the faster reaction of faster reactants and the overall consequent cooling of the system.
The quantity usually reported as a measure of this progression is the exponent α in the decay
of the root mean square velocity, 〈v2〉1/2 ∼ t−α . There is fairly universal agreement based
on theoretical and numerical results that for the annihilation reaction A + A → ∅ there is a
sum rule involving this exponent and that of the concentration decay, α + ξ = 1. Since one
finds a range of values of ξ in the literature, there is a corresponding range of values of α.
In figure 4 we show our integration results for 〈v2〉 along with a t−0.39 line (corresponding to
α = 0.2) to guide the eye. Our results are consistent with the sum rule and, again, we could
easily find a more precise value for the decay exponent. Furthermore, the exponents are the
same for both reactions, although the mean square value of the velocity is at all times higher
for the coalescence reaction. This latter observation is again consistent with the fact that only
one reactant is lost per reaction event in this reaction.

Finally, in parallel with the discussion of the diffusion-limited cases of the previous section,
we next display the spatial distribution of reactants as the reaction proceeds. We have not found
a discussion of these distributions for ballistic reactions, and so there are no predictions with
which to compare our results.

The profound differences in the behaviour of the spatial distributions for the different initial
velocity distributions are seen in figures 5 and 6. In view of the different asymptotic decay
of the concentrations for different velocity distributions exhibited in figure 3, this disparity
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Figure 5. Numerical integration results for the interparticle distribution function at different times
for the ballistic annihilation reaction A + A → ∅. The reactants have a dichotomous velocity
distribution, ±v, with v = 0.2.
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Figure 6. Numerical integration results for the interparticle distribution function at different times
for the ballistic annihilation reaction A + A → ∅. The reactants initially have a Gaussian velocity
distribution of width 0.2.

is not surprising. In figure 5 we show the interparticle distribution function for the reaction
A + A → ∅ obtained from the Langevin scheme at zero temperature and zero friction
for particles with a dichotomous velocity distribution with velocities ±v. The distribution
function as a function of interparticle distance is shown for various times for v = 0.2. Several
features are noteworthy, and to understand them we should remember that neighbouring pairs
of particles separated by a distance 	x can only be moving relative to one another in one of
three ways. They can move toward each other, in which case they will annihilate one another
in time 	t = 	x/2v. These events lead to a decrease in time of the small x peak in the figure.

9
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The reactants can simply travel together in the same direction, which does not change their
interparticle distance (eventually one or the other will be annihilated in a reaction event with a
third particle). Or they can move away from one another, the distance between them increasing
as 2vt (again, until a reaction event eliminates one or the other). This third possibility is
reflected in the moving peak in the figure, which moves a bit more slowly than 2vt because
of the other contributions. Thus, this peak is located near x ∼ 6 at t = 10 (2vt = 4) and
has moved to x ∼ 22 at t = 50 (2vt = 25), and to x ∼ 42 at t = 100 (2vt = 50). Thus,
an important feature of this interparticle distribution is that there is no interparticle gap at any
time, that is, as in a random spatial distribution there is a large probability that the interparticle
separation is small (the small ‘gaplet’ at very short distances is again due to the finite size of
the particles and the overlap constraint that we place on their initial positioning, as explained
in the appendix). One might be tempted to conclude that ballistic motion is an effective mixing
mechanism, but mixing is not the source of near particles here. Rather, it reflects the persistence
of close neighbours that travel with the same velocity. The concentration decay is anomalous
in spite of the ‘Poisson-like’ form of the distribution at short distances because of the velocity
correlations described earlier. The other important feature of the interparticle distribution
is the moving peak, which is peculiar to a dichotomic (or, in general, a discrete) velocity
distribution. Finally we note that the interparticle distribution function for the coalescence
reaction A + A → A shows all the same qualitative features as in figure 5.

Figure 6 shows the interparticle distribution function for the reaction A + A → ∅ obtained
from the Langevin scheme at zero temperature and zero friction for particles with an initial
Gaussian velocity distribution of width 0.2. This distribution should be compared with figure 2
for a diffusion-limited reaction and figure 5 for the ballistic dichotomous velocity distribution
reaction. In the former the interparticle gap discussed earlier implies an almost periodic
distribution of reactants. In the latter the distribution retains a Poisson character at all times
augmented by the additional peak associated with the velocity correlations. In the continuous
velocity distribution case the distribution is different from these two, and evolves toward one
that is essentially homogeneous, that is, one in which all interparticle distances become equally
probable. We are not aware of such a distribution in any other binary reaction problem. The
anomalous decay of the concentration reflects this spatial distribution. Again, the interparticle
distribution function for the coalescence reaction A + A → A shows all the same qualitative
features as in figure 6, with some differences in the detailed timescale to arrive at an essentially
uniform distribution.

4. Conclusions

As stated earlier, our overall goal is to establish a general encompassing approach to the binary
reaction problem that can subsume known results in appropriate limits, and that can then be
used to explore regimes that have not been studied. Our approach is to describe the motion
of reactants via an ordinary Langevin equation of motion together with a hard-sphere criterion
for the occurrence of reaction events. We proposed that the known diffusion-limited reaction
results should be recovered from our formulation in the high friction limit, and that the known
ballistic reaction results should correspond to the zero friction limit. We confirmed these
propositions for the A + A → ∅ (annihilation) and A + A → A (coagulation) reactions
in one dimension, finding excellent agreement with known results and providing new results
even in these limits.

Our next tasks in this programme include an analysis of the A + A and also the frequently
studied A + B reactions for all ranges of friction and temperature, inclusion of reverse
steps and/or additional steps in the reaction mechanism, and extensions to higher dimensions.

10
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Beyond this, we plan to include a possible substrate potential, which is a straightforward
addition in a Langevin picture.
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Appendix

In this appendix we provide some of the details of our numerical solution of the set of Langevin
equations (1), one for each particle, and the implementation of the reaction scheme between
particles.

Particles are initially embedded in a system of finite size L with a given concentration
determined by the number of particles placed in the system. In particular, we have taken
L = 524 288 and N = 100 000, which corresponds to an initial concentration of ρ(0) =
c0 = 0.1907. To test for system size effects (and to avoid such effects), in some cases we
have increased both L and N by the same factor so as to preserve this initial concentration.
We implement periodic boundary conditions, so that a particle that leaves the system from one
end re-enters it at the other. All the particles have unit mass, and each particle has a radius
R = 0.1. A reaction is defined to occur if the distance between the centres of two particles
falls below a particle diameter (since integration updates take place at discrete times, particles
may interpenetrate during one integration step). A comment on this particular choice of R is
in order. It must be sufficiently large so that in one integration step of time 	t the Langevin
dynamics do not move the particles so far that they are likely to ‘cross’ paths through each
other, i.e., we must choose so that 〈v2〉1/2	t 
 2R. Here 〈v2〉1/2 is the root mean square
velocity of the ensemble, used as a measure of the ‘typical’ velocity. On the other hand, for
comparison with diffusion and kinetic theories R must be sufficiently small so that the spatial
distribution is minimally distorted by finite particle size effects when compared to continuum
particle densities. We have ascertained that the chosen R meets these requirements, and that
changing it within reasonable bounds does not materially affect our results. For the reaction
A + A → ∅ the particles simply disappear upon encounter. For A + A → A the velocity of the
surviving particle is randomly chosen to be that of either of the reacting pair with probability
1/2 each (additional discussion of this point can be found in section 3).

Initially the particles are deposited randomly in the interval aside from the fact that we
do not allow particle overlap. If we did allow overlap, the initially overlapping pairs would
react immediately and a considerable number of particles would disappear, thus effectively
reducing the initial concentration. Not allowing an overlap causes our distribution to differ
from a continuous Poisson form only at very small interparticle distances, which affects the
evolution of the distribution only for very short times. We indicate this effect in our simulation
results in the main body of the paper as appropriate. The particles have an initial velocity
distribution P(v, 0) of one of two forms, both of which have average velocity 〈v〉 equal to
zero. One is a binary velocity distribution, where each particle has velocity of magnitude v0 but
with an equal number moving left and right. The other is a Maxwell–Boltzmann distribution
whose root mean square, 〈v2〉, can be associated with an ‘initial temperature’ of the system.

Once the particles are deposited on the line, we numerically integrate the Langevin
equation for each particle using the Heun method, which is an extension of a second order

11



J. Phys.: Condens. Matter 19 (2007) 065108 J M Sancho et al

Runge–Kutta algorithm for stochastic differential equations [22]. The time step is 	t = 0.005,
which we ascertain to be sufficiently small for the desired accuracy of our results. After each
integration step we check for all pairs of particles that are sufficiently close (overlapping) and
allow them to react. To improve the speed of this procedure, we have implemented the ‘method
of the neighbouring list’, which assigns particles to pre-defined boxes. Only particles within the
same box and in neighbouring boxes are considered when checking for reactive configurations.
The neighbouring list is updated every ten iterations.

As the integration and reaction steps proceed, we keep track of all particle positions
and velocities and associated histograms, and continue until the number of particles becomes
smaller than a predetermined number or until a predetermined maximum time is reached.
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